Cell Growth Problem Set 3

A) The following data were obtained for operating a chemostat of *Escherichia coli*:

Dilution Rate (h ⁻¹)	0.035	0.050	0.080	0.110
X(g/L)	1.30	1.62	1.74	1.99
Glucose in Feed (g/L)	6.86	6.92	6.20	6.45
Glucose in Effluent (g/L)	0.00	0.00	0.01	0.02

- i. For each dilution rate, calculate the specific glucose consumption rate, q_G.
- ii. For each dilution rate, calculate the observed biomass yield, $Y_{X/S}^{OBS}$
- iii. Calculate the maintenance and the true biomass yield. Use both the Pirt Plot and the Tempest Plot.
- B) You conduct a glycerol-limited chemostat in a defined medium in a 50.0 liter vessel at a dilution rate of 0.115 h⁻¹, and obtain the following information:

Dry Cell Weight = 4.87 g/L

Feed Glycerol = 16.12 g/L

Gas Flowrate (dry basis) STP <u>Inlet</u> = 24.50 L/min

Gas (dry basis) Inlet = $21.05\% O_2$, $0.00 \% CO_2$

Gas (dry basis) Outlet = $18.94\% O_2$, $2.67 \% CO_2$

 $R = 0.08206 \text{ L} \cdot \text{atm/mol} \cdot \text{K}$

M(glycerol) = 92.094 g/mol

M(dry cell, unit C) = 24.70 g/mol

Calculate or estimate:

- i. The OUR and CER (units of mmol/Lh).
- ii. The specific oxygen uptake rate of these cells (mmol/gh).
- iii. The heat of metabolism (kcal/h).
- iv. Complete a carbon balance to obtain carbon recovery.
- v. The observed biomass yield, $Y_{X/S}^{OBS}$
- vi. How can you 'prove' operationally that the system is glycerol-limited?